3.654 \(\int \frac {x^2}{a+c x^4} \, dx\)

Optimal. Leaf size=185 \[ \frac {\log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )}{4 \sqrt {2} \sqrt [4]{a} c^{3/4}}-\frac {\log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )}{4 \sqrt {2} \sqrt [4]{a} c^{3/4}}-\frac {\tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} \sqrt [4]{a} c^{3/4}}+\frac {\tan ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{2 \sqrt {2} \sqrt [4]{a} c^{3/4}} \]

[Out]

1/4*arctan(-1+c^(1/4)*x*2^(1/2)/a^(1/4))/a^(1/4)/c^(3/4)*2^(1/2)+1/4*arctan(1+c^(1/4)*x*2^(1/2)/a^(1/4))/a^(1/
4)/c^(3/4)*2^(1/2)+1/8*ln(-a^(1/4)*c^(1/4)*x*2^(1/2)+a^(1/2)+x^2*c^(1/2))/a^(1/4)/c^(3/4)*2^(1/2)-1/8*ln(a^(1/
4)*c^(1/4)*x*2^(1/2)+a^(1/2)+x^2*c^(1/2))/a^(1/4)/c^(3/4)*2^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 185, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 6, integrand size = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.462, Rules used = {297, 1162, 617, 204, 1165, 628} \[ \frac {\log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )}{4 \sqrt {2} \sqrt [4]{a} c^{3/4}}-\frac {\log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )}{4 \sqrt {2} \sqrt [4]{a} c^{3/4}}-\frac {\tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} \sqrt [4]{a} c^{3/4}}+\frac {\tan ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{2 \sqrt {2} \sqrt [4]{a} c^{3/4}} \]

Antiderivative was successfully verified.

[In]

Int[x^2/(a + c*x^4),x]

[Out]

-ArcTan[1 - (Sqrt[2]*c^(1/4)*x)/a^(1/4)]/(2*Sqrt[2]*a^(1/4)*c^(3/4)) + ArcTan[1 + (Sqrt[2]*c^(1/4)*x)/a^(1/4)]
/(2*Sqrt[2]*a^(1/4)*c^(3/4)) + Log[Sqrt[a] - Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2]/(4*Sqrt[2]*a^(1/4)*c^(3/
4)) - Log[Sqrt[a] + Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2]/(4*Sqrt[2]*a^(1/4)*c^(3/4))

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 297

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rubi steps

\begin {align*} \int \frac {x^2}{a+c x^4} \, dx &=-\frac {\int \frac {\sqrt {a}-\sqrt {c} x^2}{a+c x^4} \, dx}{2 \sqrt {c}}+\frac {\int \frac {\sqrt {a}+\sqrt {c} x^2}{a+c x^4} \, dx}{2 \sqrt {c}}\\ &=\frac {\int \frac {1}{\frac {\sqrt {a}}{\sqrt {c}}-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+x^2} \, dx}{4 c}+\frac {\int \frac {1}{\frac {\sqrt {a}}{\sqrt {c}}+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+x^2} \, dx}{4 c}+\frac {\int \frac {\frac {\sqrt {2} \sqrt [4]{a}}{\sqrt [4]{c}}+2 x}{-\frac {\sqrt {a}}{\sqrt {c}}-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}-x^2} \, dx}{4 \sqrt {2} \sqrt [4]{a} c^{3/4}}+\frac {\int \frac {\frac {\sqrt {2} \sqrt [4]{a}}{\sqrt [4]{c}}-2 x}{-\frac {\sqrt {a}}{\sqrt {c}}+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}-x^2} \, dx}{4 \sqrt {2} \sqrt [4]{a} c^{3/4}}\\ &=\frac {\log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{4 \sqrt {2} \sqrt [4]{a} c^{3/4}}-\frac {\log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{4 \sqrt {2} \sqrt [4]{a} c^{3/4}}+\frac {\operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} \sqrt [4]{a} c^{3/4}}-\frac {\operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} \sqrt [4]{a} c^{3/4}}\\ &=-\frac {\tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} \sqrt [4]{a} c^{3/4}}+\frac {\tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} \sqrt [4]{a} c^{3/4}}+\frac {\log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{4 \sqrt {2} \sqrt [4]{a} c^{3/4}}-\frac {\log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{4 \sqrt {2} \sqrt [4]{a} c^{3/4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 134, normalized size = 0.72 \[ \frac {\log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )-\log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )-2 \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )+2 \tan ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{4 \sqrt {2} \sqrt [4]{a} c^{3/4}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^2/(a + c*x^4),x]

[Out]

(-2*ArcTan[1 - (Sqrt[2]*c^(1/4)*x)/a^(1/4)] + 2*ArcTan[1 + (Sqrt[2]*c^(1/4)*x)/a^(1/4)] + Log[Sqrt[a] - Sqrt[2
]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2] - Log[Sqrt[a] + Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/(4*Sqrt[2]*a^(1/4
)*c^(3/4))

________________________________________________________________________________________

fricas [A]  time = 0.80, size = 122, normalized size = 0.66 \[ -\left (-\frac {1}{a c^{3}}\right )^{\frac {1}{4}} \arctan \left (-c x \left (-\frac {1}{a c^{3}}\right )^{\frac {1}{4}} + \sqrt {-a c \sqrt {-\frac {1}{a c^{3}}} + x^{2}} c \left (-\frac {1}{a c^{3}}\right )^{\frac {1}{4}}\right ) + \frac {1}{4} \, \left (-\frac {1}{a c^{3}}\right )^{\frac {1}{4}} \log \left (a c^{2} \left (-\frac {1}{a c^{3}}\right )^{\frac {3}{4}} + x\right ) - \frac {1}{4} \, \left (-\frac {1}{a c^{3}}\right )^{\frac {1}{4}} \log \left (-a c^{2} \left (-\frac {1}{a c^{3}}\right )^{\frac {3}{4}} + x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(c*x^4+a),x, algorithm="fricas")

[Out]

-(-1/(a*c^3))^(1/4)*arctan(-c*x*(-1/(a*c^3))^(1/4) + sqrt(-a*c*sqrt(-1/(a*c^3)) + x^2)*c*(-1/(a*c^3))^(1/4)) +
 1/4*(-1/(a*c^3))^(1/4)*log(a*c^2*(-1/(a*c^3))^(3/4) + x) - 1/4*(-1/(a*c^3))^(1/4)*log(-a*c^2*(-1/(a*c^3))^(3/
4) + x)

________________________________________________________________________________________

giac [A]  time = 0.16, size = 179, normalized size = 0.97 \[ \frac {\sqrt {2} \left (a c^{3}\right )^{\frac {3}{4}} \arctan \left (\frac {\sqrt {2} {\left (2 \, x + \sqrt {2} \left (\frac {a}{c}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{c}\right )^{\frac {1}{4}}}\right )}{4 \, a c^{3}} + \frac {\sqrt {2} \left (a c^{3}\right )^{\frac {3}{4}} \arctan \left (\frac {\sqrt {2} {\left (2 \, x - \sqrt {2} \left (\frac {a}{c}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{c}\right )^{\frac {1}{4}}}\right )}{4 \, a c^{3}} - \frac {\sqrt {2} \left (a c^{3}\right )^{\frac {3}{4}} \log \left (x^{2} + \sqrt {2} x \left (\frac {a}{c}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{c}}\right )}{8 \, a c^{3}} + \frac {\sqrt {2} \left (a c^{3}\right )^{\frac {3}{4}} \log \left (x^{2} - \sqrt {2} x \left (\frac {a}{c}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{c}}\right )}{8 \, a c^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(c*x^4+a),x, algorithm="giac")

[Out]

1/4*sqrt(2)*(a*c^3)^(3/4)*arctan(1/2*sqrt(2)*(2*x + sqrt(2)*(a/c)^(1/4))/(a/c)^(1/4))/(a*c^3) + 1/4*sqrt(2)*(a
*c^3)^(3/4)*arctan(1/2*sqrt(2)*(2*x - sqrt(2)*(a/c)^(1/4))/(a/c)^(1/4))/(a*c^3) - 1/8*sqrt(2)*(a*c^3)^(3/4)*lo
g(x^2 + sqrt(2)*x*(a/c)^(1/4) + sqrt(a/c))/(a*c^3) + 1/8*sqrt(2)*(a*c^3)^(3/4)*log(x^2 - sqrt(2)*x*(a/c)^(1/4)
 + sqrt(a/c))/(a*c^3)

________________________________________________________________________________________

maple [A]  time = 0.00, size = 128, normalized size = 0.69 \[ \frac {\sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}-1\right )}{4 \left (\frac {a}{c}\right )^{\frac {1}{4}} c}+\frac {\sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}+1\right )}{4 \left (\frac {a}{c}\right )^{\frac {1}{4}} c}+\frac {\sqrt {2}\, \ln \left (\frac {x^{2}-\left (\frac {a}{c}\right )^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {\frac {a}{c}}}{x^{2}+\left (\frac {a}{c}\right )^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {\frac {a}{c}}}\right )}{8 \left (\frac {a}{c}\right )^{\frac {1}{4}} c} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(c*x^4+a),x)

[Out]

1/8/c/(a/c)^(1/4)*2^(1/2)*ln((x^2-(a/c)^(1/4)*2^(1/2)*x+(a/c)^(1/2))/(x^2+(a/c)^(1/4)*2^(1/2)*x+(a/c)^(1/2)))+
1/4/c/(a/c)^(1/4)*2^(1/2)*arctan(2^(1/2)/(a/c)^(1/4)*x+1)+1/4/c/(a/c)^(1/4)*2^(1/2)*arctan(2^(1/2)/(a/c)^(1/4)
*x-1)

________________________________________________________________________________________

maxima [A]  time = 3.02, size = 169, normalized size = 0.91 \[ \frac {\sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {c} x + \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {c}}}\right )}{4 \, \sqrt {\sqrt {a} \sqrt {c}} \sqrt {c}} + \frac {\sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {c} x - \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {c}}}\right )}{4 \, \sqrt {\sqrt {a} \sqrt {c}} \sqrt {c}} - \frac {\sqrt {2} \log \left (\sqrt {c} x^{2} + \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}} x + \sqrt {a}\right )}{8 \, a^{\frac {1}{4}} c^{\frac {3}{4}}} + \frac {\sqrt {2} \log \left (\sqrt {c} x^{2} - \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}} x + \sqrt {a}\right )}{8 \, a^{\frac {1}{4}} c^{\frac {3}{4}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(c*x^4+a),x, algorithm="maxima")

[Out]

1/4*sqrt(2)*arctan(1/2*sqrt(2)*(2*sqrt(c)*x + sqrt(2)*a^(1/4)*c^(1/4))/sqrt(sqrt(a)*sqrt(c)))/(sqrt(sqrt(a)*sq
rt(c))*sqrt(c)) + 1/4*sqrt(2)*arctan(1/2*sqrt(2)*(2*sqrt(c)*x - sqrt(2)*a^(1/4)*c^(1/4))/sqrt(sqrt(a)*sqrt(c))
)/(sqrt(sqrt(a)*sqrt(c))*sqrt(c)) - 1/8*sqrt(2)*log(sqrt(c)*x^2 + sqrt(2)*a^(1/4)*c^(1/4)*x + sqrt(a))/(a^(1/4
)*c^(3/4)) + 1/8*sqrt(2)*log(sqrt(c)*x^2 - sqrt(2)*a^(1/4)*c^(1/4)*x + sqrt(a))/(a^(1/4)*c^(3/4))

________________________________________________________________________________________

mupad [B]  time = 1.04, size = 35, normalized size = 0.19 \[ \frac {\mathrm {atan}\left (\frac {c^{1/4}\,x}{{\left (-a\right )}^{1/4}}\right )-\mathrm {atanh}\left (\frac {c^{1/4}\,x}{{\left (-a\right )}^{1/4}}\right )}{2\,{\left (-a\right )}^{1/4}\,c^{3/4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(a + c*x^4),x)

[Out]

(atan((c^(1/4)*x)/(-a)^(1/4)) - atanh((c^(1/4)*x)/(-a)^(1/4)))/(2*(-a)^(1/4)*c^(3/4))

________________________________________________________________________________________

sympy [A]  time = 0.22, size = 26, normalized size = 0.14 \[ \operatorname {RootSum} {\left (256 t^{4} a c^{3} + 1, \left (t \mapsto t \log {\left (64 t^{3} a c^{2} + x \right )} \right )\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(c*x**4+a),x)

[Out]

RootSum(256*_t**4*a*c**3 + 1, Lambda(_t, _t*log(64*_t**3*a*c**2 + x)))

________________________________________________________________________________________